skip to main content


Search for: All records

Creators/Authors contains: "Bhandari, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofMBH∼ 108Mand an Eddington ratioLbol/LEdd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanLX≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs.

     
    more » « less
  2. Abstract

    We report on the commensal ASKAP detection of a fast radio burst (FRB), FRB 20211127I, and the detection of neutral hydrogen (Hi) emission in the FRB host galaxy, WALLABY J131913–185018 (hereafter W13–18). This collaboration between the CRAFT and WALLABY survey teams marks the fifth, and most distant, FRB host galaxy detected in Hi, not including the Milky Way. We find that W13–18 has an Himass ofMHI= 6.5 × 109M, an Hi-to-stellar mass ratio of 2.17, and coincides with a continuum radio source of flux density at 1.4 GHz of 1.3 mJy. The Higlobal spectrum of W13–18 appears to be asymmetric, albeit the Hiobservation has a low signal-to-noise ratio (S/N), and the galaxy itself appears modestly undisturbed. These properties are compared to the early literature of Hiemission detected in other FRB hosts to date, where either the Higlobal spectra were strongly asymmetric, or there were clearly disrupted Hiintensity map distributions. W13–18 lacks a sufficient S/N to determine whether it is significantly less asymmetric in its Hidistribution than previous examples of FRB host galaxies. However, there are no strong signs of a major interaction in the optical image of the host galaxy that would stimulate a burst of star formation and hence the production of putative FRB progenitors related to massive stars and their compact remnants.

     
    more » « less
  3. ABSTRACT

    We constrain the Hubble constant H0 using Fast Radio Burst (FRB) observations from the Australian Square Kilometre Array Pathfinder (ASKAP) and Murriyang (Parkes) radio telescopes. We use the redshift-dispersion measure (‘Macquart’) relationship, accounting for the intrinsic luminosity function, cosmological gas distribution, population evolution, host galaxy contributions to the dispersion measure (DMhost), and observational biases due to burst duration and telescope beamshape. Using an updated sample of 16 ASKAP FRBs detected by the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey and localized to their host galaxies, and 60 unlocalized FRBs from Parkes and ASKAP, our best-fitting value of H0 is calculated to be $73_{-8}^{+12}$ km s−1 Mpc−1. Uncertainties in FRB energetics and DMhost produce larger uncertainties in the inferred value of H0 compared to previous FRB-based estimates. Using a prior on H0 covering the 67–74 km s−1 Mpc−1 range, we estimate a median ${\rm DM}_{\rm host}= 186_{-48}^{+59}\,{\rm pc \, cm^{-3}}$, exceeding previous estimates. We confirm that the FRB population evolves with redshift similarly to the star-formation rate. We use a Schechter luminosity function to constrain the maximum FRB energy to be log10Emax$=41.26_{-0.22}^{+0.27}$ erg assuming a characteristic FRB emission bandwidth of 1 GHz at 1.3 GHz, and the cumulative luminosity index to be $\gamma =-0.95_{-0.15}^{+0.18}$. We demonstrate with a sample of 100 mock FRBs that H0 can be measured with an uncertainty of ±2.5 km s−1 Mpc−1, demonstrating the potential for clarifying the Hubble tension with an upgraded ASKAP FRB search system. Last, we explore a range of sample and selection biases that affect FRB analyses.

     
    more » « less
  4. Context. Fast radio bursts (FRBs) are extremely energetic pulses of millisecond duration and unknown origin. To understand the phenomenon that emits these pulses, targeted and un-targeted searches have been performed for multiwavelength counterparts, including the optical. Aims. The objective of this work is to search for optical transients at the positions of eight well-localized (< 1″) FRBs after the arrival of the burst on different timescales (typically at one day, several months, and one year after FRB detection). We then compare this with known optical light curves to constrain progenitor models. Methods. We used the Las Cumbres Observatory Global Telescope (LCOGT) network to promptly take images with its network of 23 telescopes working around the world. We used a template subtraction technique to analyze all the images collected at differing epochs. We have divided the difference images into two groups: In one group we use the image of the last epoch as a template, and in the other group we use the image of the first epoch as a template. We then searched for optical transients at the localizations of the FRBs in the template subtracted images. Results. We have found no optical transients and have therefore set limiting magnitudes to the optical counterparts. Typical limits in apparent and absolute magnitudes for our LCOGT data are ∼22 and −19 mag in the r band, respectively. We have compared our limiting magnitudes with light curves of super-luminous supernovae (SLSNe), Type Ia supernovae (SNe Ia), supernovae associated with gamma-ray bursts (GRB-SNe), a kilonova, and tidal disruption events (TDEs). Conclusions. Assuming that the FRB emission coincides with the time of explosion of these transients, we rule out associations with SLSNe (at the ∼99.9% confidence level) and the brightest subtypes of SNe Ia, GRB-SNe, and TDEs (at a similar confidence level). However, we cannot exclude scenarios where FRBs are directly associated with the faintest of these subtypes or with kilonovae. 
    more » « less
  5. ABSTRACT

    Searches for optical transients are usually performed with a cadence of days to weeks, optimized for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour time-scales. Here, we present the results of deep searches for dim, minute-time-scale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20 s exposures to systematically probe time-scales down to 1.17 min at magnitude limits g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multiband imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multifacility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-time-scale fast optical transient rates for a range of depths and time-scales. Finally, we demonstrate that optical g-band light-curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.

     
    more » « less